¡BIenvenidos!

Con tecnología de Blogger.

martes, 11 de noviembre de 2014

Medios de transmisión de datos


El medio de transmisión constituye el soporte físico a través del cual emisor y receptor pueden comunicarse en un sistema de transmisión de datos. Distinguimos dos tipos de medios: guiados y no guiados. En ambos casos la transmisión se realiza por medio de ondas electromagnéticas.

Medios guiados:

Los medios guiados conducen (guían) las ondas a través de un camino físico, ejemplos de estos medios son el cable coaxial, la fibra óptica y el par trenzado.


Pares trenzados: este cable consiste en dos alambres de cobre aislados, en general de 1mm de espesor. Los alambres se entrelazan en forma helicoidal, como en una molécula de DNA. La forma trenzada del cable se utiliza para reducir la interferencia eléctrica con respecto a los pares cercanos que se encuentran a su alrededor. Los pares trenzados se pueden utilizar tanto para transmisión analógica como digital, y su ancho de banda depende del calibre del alambre y de la distancia que recorre; en muchos casos pueden obtenerse transmisiones de varios megabits, en distancias de pocos kilómetros. Debido a su adecuado comportamiento y bajo costo, los pares trenzados se utilizan ampliamente y es probable que se presencia permanezca por muchos años.


Cable coaxial: consta de un alambre de cobre duro en su parte central, es decir, que constituye el núcleo, el cual se encuentra rodeado por un material aislante. Este material aislante está rodeado por un conductor cilíndrico que frecuentemente se presenta como una malla de tejido trenzado. El conductor externo está cubierto por una capa de plástico protector.

La construcción del cable coaxial produce una buena combinación y un gran ancho de banda y una excelente inmunidad al ruido. El ancho de banda que se puede obtener depende de la longitud del cable; para cables de 1km, por ejemplo, es factible obtener velocidades de datos de hasta 10Mbps, y en cables de longitudes menores, es posible obtener velocidades superiores. Se pueden utilizar cables con mayor longitud, pero se obtienen velocidades muy bajas. Los cables coaxiales se emplean ampliamente en redes de área local y para transmisiones de largas distancia del sistema telefónico.


Fibra óptica: un cable de fibra óptica consta de tres secciones concéntricas. La más interna, el núcleo, consiste en una o más hebras o fibras hechas de cristal o plástico. Cada una de ellas lleva un revestimiento de cristal o plástico con propiedades ópticas distintas a las del núcleo. La capa más exterior, que recubre una o más fibras, debe ser de un material opaco y resistente.

Un sistema de transmisión por fibra óptica está formado por una fuente luminosa muy monocromática (generalmente un láser), la fibra encargada de transmitir la señal luminosa y un fotodiodo que reconstruye la señal eléctrica.

Medios no guiados:

Los medios no guiados proporcionan un soporte para que las ondas se transmitan, pero no las dirigen.

Radioenlaces de VHF y UHF: estas bandas cubren aproximadamente desde 55 a 550 Mhz. Son también omnidireccionales, pero a diferencia de las anteriores la ionosfera es transparente a ellas. Su alcance máximo es de un centenar de kilómetros, y las velocidades que permite del orden de los 9600 bps. Su aplicación suele estar relacionada con los radioaficionados y con equipos de comunicación militares, también la televisión y los aviones.

Microondas: además de su aplicación en hornos, las microondas nos permiten transmisiones tanto terrestres como con satélites. Dada su frecuencia, del orden de 1 a 10 Ghz, las microondas son muy direccionales y sólo se pueden emplear en situaciones en que existe una línea visual que une emisor y receptor. Los enlaces de microondas permiten grandes velocidades de transmisión, del orden de 10 Mbps.





Importancia del ancho de banda


El ancho de banda se define como a la cantidad de datos que se transmiten a través de una conexión de red en un periodo de tiempo establecido.

La importancia del ancho de banda, se basa en la necesidad del transporte de información según la capacidad que se requiera. El ancho de banda en la red local (LAN), es igual a la capacidad que tengan los dispositivos que se encuentran allí conectados y varían los costos por su uso. Al conectar esa red LAN a una red de mayor tamaño como Internet, es necesario comprar ancho de banda a un proveedor, por lo cual se puede decir que el ancho de banda no es gratuito para este tipo de conexiones. Para que sea la decisión sobre la cantidad de ancho de banda que debe mantener una red determinada, hay que tener en cuenta los medios físicos que la conforman, así como la cantidad de información que fluirá a través de ella y los costos relacionados con la permanencia del servicio.

Tecnológicamente la capacidad de la red aumenta con los nuevos desarrollos permitiendo el uso de nuevas aplicaciones que aprovechan un mayor ancho de banda, como por ejemplo las aplicaciones que permiten videoconferencia.

Topología de red


La topología de red es la representación geométrica de la relación entre los enlaces y los dispositivos que lo enlazan entre sí (habitualmente denominados nodos).

Topología en Bus:

Una topología de bus es multipunto. Un cable largo actúa como una red troncal que conecta todos los dispositivos en la red.
Los nodos se conectan al bus mediante cables de conexión (latiguillos) y sondas. Un cable de conexión es una conexión que va desde el dispositivo al cable principal. Una sonda es un conector que, o bien se conecta al cable principal, o se pincha en el cable para crear un contacto con el núcleo metálico.

Topología en Estrella:

En la topología en estrella cada dispositivo solamente tiene un enlace punto a punto dedicado con el controlador central, habitualmente llamado concentrador. Los dispositivos no están directamente enlazados entre sí.

A diferencia de la topología en malla, la topología en estrella no permite el tráfico directo de dispositivos. El controlador actúa como un intercambiador: si un dispositivo quiere enviar datos a otro, envía los datos al controlador, que los retransmite al dispositivo final.
Una topología en estrella es más barata que una topología en malla. En una red de estrella, cada dispositivo necesita solamente un enlace y un puerto de entrada/salida para conectarse a cualquier número de dispositivos.

Este factor hace que también sea más fácil de instalar y reconfigurar. Además, es necesario instalar menos cables, y la conexión, desconexión y traslado de dispositivos afecta solamente a una conexión: la que existe entre el dispositivo y el concentrador.


Topología en Malla:

En una topología en malla, cada dispositivo tiene un enlace punto a punto y dedicado con cualquier otro dispositivo. El término dedicado significa que el enlace conduce el tráfico únicamente entre los dos dispositivos que conecta.

Una malla ofrece varias ventajas. En primer lugar, el uso de los enlaces dedicados garantiza que cada conexión sólo debe transportar la carga de datos propia de los dispositivos conectados, eliminando el problema que surge cuando los enlaces son compartidos por varios dispositivos. En segundo lugar, una topología en malla es robusta. Si un enlace falla, no inhabilita todo el sistema.


Topología en Árbol:

La topología en árbol es una variante de la de estrella. Como en la estrella, los nodos del árbol están conectados a un concentrador central que controla el tráfico de la red. Sin embargo, no todos los dispositivos se conectan directamente al concentrador central. La mayoría de los dispositivos se conectan a un concentrador secundario que, a su vez, se conecta al concentrador central.

El controlador central del árbol es un concentrador activo. Un concentrador activo contiene un repetidor, es decir, un dispositivo hardware que regenera los patrones de bits recibidos antes de retransmitidos.


Topología de Anillo:

Una topología de anillo se compone de un solo anillo cerrado formado por nodos y enlaces, en el que cada nodo está conectado solamente con los dos nodos adyacentes.

Los dispositivos se conectan directamente entre sí por medio de cables en lo que se denomina una cadena margarita. Para que la información pueda circular, cada estación debe transferir la información a la estación adyacente.




Topología de Red Celular:

La topología celular está compuesta por áreas circulares o hexagonales, cada una de las cuales tiene un nodo individual en el centro.

La topología celular es un área geográfica dividida en regiones (celdas) para los fines de la tecnología inalámbrica. En esta tecnología no existen enlaces físicos; sólo hay ondas electromagnéticas. La ventaja obvia de una topología celular (inalámbrica) es que no existe ningún medio tangible aparte de la atmósfera terrestre o el del vacío del espacio exterior (y los satélites). Las desventajas son que las señales se encuentran presentes en cualquier lugar de la celda y, de ese modo, pueden sufrir disturbios y violaciones de seguridad. Como norma, las topologías basadas en celdas se integran con otras topologías, ya sea que usen la atmósfera o los satélites.

Tipos de redes


Las redes según sea la utilización por parte de los usuarios pueden ser:


Redes Compartidas, aquellas a las que se une un gran número de usuarios, compartiendo todas las necesidades de transmisión e incluso con transmisiones de otra naturaleza.





Redes exclusivas, aquellas que por motivo de seguridad, velocidad o ausencia de otro tipo de red, conectan dos o más puntos de forma exclusiva. Este tipo de red puede estructurarse en redes punto a punto o redes multipunto.





Otro tipo se analiza en cuanto a la propiedad a la que pertenezcan dichas estructuras, en este caso se clasifican en:


Redes privadas, aquellas que son gestionadas por personas particulares, empresa u organizaciones de índole privado, en este tipo de red solo tienen acceso los terminales de los propietarios.


Redes públicas, aquellas que pertenecen a organismos estatales y se encuentran abiertas a cualquier usuario que lo solicite mediante el correspondiente contrato.




Otra clasificación, la más conocida, es según la cobertura del servicio en este caso pueden ser:


Red de área Personal (PAN): (Personal Area Network) es una red de ordenadores usada para la comunicación entre los dispositivos de la computadora (teléfonos incluyendo las ayudantes digitales personales) cerca de una persona. Los dispositivos pueden o no pueden pertenecer a la persona en cuestión. El alcance de una PAN es típicamente algunos metros. Las PAN se pueden utilizar para la comunicación entre los dispositivos personales de ellos mismos (comunicación del intrapersonal), o para conectar con una red de alto nivel y el Internet (un up link). Las redes personales del área se pueden conectar con cables con los buses de la computadora tales como USB y FireWire. Una red personal sin hilos del área (WPAN) se puede también hacer posible con tecnologías de red tales como IrDA y Bluetooth.


Red de área local (LAN): una red que se limita a un área especial relativamente pequeña tal como un cuarto, un solo edificio, una nave, o un avión. Las redes de área local a veces se llaman una sola red de la localización. Nota: Para los propósitos administrativos, LANs grande se divide generalmente en segmentos lógicos más pequeños llamados los Workgroups. Un Workgroups es un grupo de las computadoras que comparten un sistema común de recursos dentro de un LAN.


Red de área local virtual (VLAN): Una Virtual LAN ó comúnmente conocida como VLAN, es un grupo de computadoras, con un conjunto común de recursos a compartir y de requerimientos, que se comunican como si estuvieran adjuntos a una división lógica de redes de computadoras en la cual todos los nodos pueden alcanzar a los otros por medio de broadcast (dominio de broadcast) en la capa de enlace de datos, a pesar de su diversa localización física. Con esto, se pueden lógicamente agrupar computadoras para que la localización de la red ya no sea tan asociada y restringida a la localización física de cada computadora, como sucede con una LAN, otorgando además seguridad, flexibilidad y ahorro de recursos. Para lograrlo, se ha establecido la especificación IEEE 802.1Q como un estándar diseñado para dar dirección al problema de cómo separar redes físicamente muy largas en partes pequeñas, así como proveer un alto nivel de seguridad entre segmentos de redes internas teniendo la libertad de administrarlas sin importar su ubicación física.


Red del área del campus (CAN): Se deriva a una red que conecta dos o más LANs los cuales deben estar conectados en un área geográfica específica tal como un campus de universidad, un complejo industrial o una base militar.




Red de área metropolitana (MAN): una red que conecta las redes de un área dos o más locales juntos pero no extiende más allá de los límites de la ciudad inmediata, o del área metropolitana. Los enrutadores (routers) múltiples, los interruptores (switch) y los cubos están conectados para crear a una MAN.




Red de área amplia (WAN): es una red de comunicaciones de datos que cubre un área geográfica relativamente amplia y que utiliza a menudo las instalaciones de transmisión proporcionadas por los portadores comunes, tales como compañías del teléfono. Las tecnologías WAN funcionan generalmente en las tres capas más bajas del Modelo de referencia OSI: la capa física, la capa de enlace de datos, y la capa de red.



Red de área de almacenamiento (SAN): Es una red concebida para conectar servidores, matrices (arrays) de discos y librerías de soporte. Principalmente, está basada en tecnología de fibra o iSCSI. Su función es la de conectar de manera rápida, segura y fiable los distintos elementos de almacenamiento que la conforman.




Historia de las redes


En realidad, la historia de la red se puede remontar al principio del siglo XIX. El primer intento de establecer una red amplia estable de comunicaciones, que abarcara al menos un territorio nacional, se produjo en Suecia y Francia a principios del siglo XIX. El primer indicio de dichas redes de comunicación fue de tecnología telefónica y telegráfica. Mientras que,  Los     primeros enlaces entre ordenadores se caracterizaron por realizarse entre equipos que utilizaban idénticos sistemas operativos soportados por similar hardware y empleaban líneas de transmisión exclusivas para enlazar sólo dos elementos de la red.


La primera red experimental de conmutación de paquetes se usó en el Reino Unido, en los National Physics Laboratories; otro experimento similar lo llevó a cabo en Francia la Societè Internationale de Telecommunications Aeronautiques. Hasta el año 69 esta tecnología no llego a los USA aunque en 1964 el Departamento de Defensa de los EE.UU. pide a la agencia DARPA (Defense Advanced Research Proyects Agency) la realización de investigaciones con el objetivo de lograr una red de ordenadores capaz de resistir un ataque nuclear. Para el desarrollo de estas investigaciones partió de la idea de enlazar equipos ubicados en lugares geográficos distantes, utilizando como medio de transmisión la red telefónica existente en el país y una tecnología que había surgido recientemente en Europa con el nombre de Conmutación de Paquetes.
En 1969 surge la primera red experimental ARPANET, en 1971 esta red la integraban 15 universidades, el MIT; y la NASA; y al otro año existían 40 sitios diferentes conectados que intercambiaban mensajes entre usuarios individuales, permitían el control de un ordenador de forma remota y el envío de largos ficheros de textos o de datos.

Durante 1973 ARPANET desborda las fronteras de los EE.UU. al establecer conexiones internacionales con la "University College of London" de Inglaterra y el "Royal Radar Establishment" de Noruega.

En esta etapa inicial de las redes, la velocidad de transmisión de información entre los ordenadores era lenta y sufrían frecuentes interrupciones. Ya avanzada la década del 70, DARPA, le encarga a la Universidad de Stamford la elaboración de protocolos que permitieran la transferencia de datos a mayor velocidad y entre diferentes tipos de redes de ordenadores. En este contexto es que Vinton G. Cerf, Robert E. Kahn, y un grupo de sus estudiantes desarrollan los protocolos TCP/IP.


En 1982 estos protocolos fueron adoptados como estándar para todos los ordenadores conectados a ARPANET, lo que hizo posible el surgimiento de la red universal que existe en la actualidad bajo el nombre de Internet.

En la década de 1980 esta red de redes conocida como la Internet fue creciendo y desarrollándose debido a que con el paso del tiempo cientos y miles de usuarios, fueron conectando sus ordenadores.

¿Que es una red?



Una Red es justamente un sistema de comunicación que se da entre distintos equipos para poder realizar una comunicación eficiente, rápida y precisa, para la transmisión de datos de un ordenador a otro, realizando entonces un Intercambio de Información (recordando que una Información es un conjunto ordenado de Datos) y compartiendo también Recursos disponibles en el equipo.


Esta conexión puede ser realizada en forma directa, utilizando Cables de todo tipo, o bien mediante Ondas Electromagnéticas, presentes en las tecnologías inalámbricas, que requieren un adaptador específico para esta comunicación, que puede ser incluido en el equipo o conectado al equipo.



domingo, 5 de octubre de 2014

Ventajas de los sistemas operactivos


  • Permite la comunicación entre modulos mediante llamadas a procedimientos.
  • Proporcionan una mayor seguridad y eficiencia al computador.
  • Gestiona recursos del hardware.
  • Provee servicio a los programas de aplicación

Por otra parte, las desventajas de los so radican principalmente en el modelo a utilizar, por ejemplo: hay algunos que poseen como principal desventaja su precio, otros que carecen de soporte técnico y seguridad, tienen ciertas limitaciones por RAM, puede también que sean propensos a ataques maliciosos o virus, entre otras cosas.



Sistemas operativos más utilizados actualmente

 






Windows XP: este sistema operativo es la combinación de la compatibilidad y las posibilidades de los windows 9x con la fiabilidad, seguridad y rendimiento que ofrece la familia Windows NT. XP es una abreviación de eXPerience.

Windows XP presenta tres versiones: Home, Professional, y Professional de 64 bits.


Windows VIsta: es una versión del sistema operativo Windwos, es sucesor de Windows XP, y esta basado en la familia de sistemas Windows NT. Fue lanzado el 30 de noviembre de  2006 solo en versión empresarial, para el usuario final la versión fue lanzada el 30 de enero de 2007.
Windows Vista presenta 6 distintas versiones: Business, Enterprise, Home Premium, Home Basic, Ultimate y Starter.




Mac OS X: Este sistema operativo fue desarrollado por Apple. Inc. y es la décima versión del so de dicha empresa para computadores Macintosh. Se caracteriza principalmente por su sencillez, fiabilidad y facilidad de uso.





Linux: Este es un so que posee un núcleo del mismo nombre. El código fuente es abierto, por lo tanto, está disponible para cualquier persona y así pueda estudiarlo, usarlo, modificarlo y redistribuirlo. Es de tipo UNIX y ampliamente popular en el mercado de servidores.




Windows 7: esta versión de sistema operativo de Windows fue lanzado el 22 de julio del 2009 preinstalado en computadoras y el 22 de octubre de ese mismo año al publico en general. Básicamente mejora la interfaz haciéndola mas flexible a los usuarios; además es más ligero y rápido.
Existen 6 versiones de Windows 7: Starter, Home Basic, Home Premium, Professional, Enterprise y Ultimate. 




Principales características de los sistemas operativos






  • Hace más conveniente el uso del computador.
  • Permite que los recursos del computador se usen de manera eficiente.
  • Administra el hardware.
  • Comunica a los dispositivos periféricos, cuando el usuario así lo requiera.
  • Organiza datos para acceso rápido y seguro.
  • Permite al usuario manejar con alta facilidad todo lo referente a la instalación y uso de las redes de computadoras.
  • Procesamiento por bytes de flujo a través del bus de datos.
  • Posee técnicas de recuperación de errores.
  • Evita que los usuarios se bloqueen entre ellos.